RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2015

FIRST YEAR

Date : 27/05/2015 Time : 11 am - 1 pm

PHYSICS (General)

Paper : II

Full Marks : 50

[Use a separate Answer Book for each group]

<u>Group – A</u>

[Answer any two questions]

1.	a)	Prove that the kinetic energy of a perfect gas is proportional to absolute temperature.	[3]
	b)	Under what physical condition Maxwell's law of distribution of velocities of a perfect gas is	
		applicable? Define most probable velocity in the Maxwell's law of distribution of such a gas.	[1+1]
	c)	State Van-der-Waal's equation of a real gas. Under what condition this equation reduces to	F1 . 11
	1)	perfect gas equation.	[1+1]
	d)	Find the critical temperature of helium gas. Given critical pressure = $2 \cdot 26$ atm, critical density = $0 \cdot 069 \text{ gm cm}^{-3}$, R = $8 \cdot 31 \text{ J.mol}^{-1}$.K ⁻¹ .	[3]
2.	a)	Write down the mathematical form of first law of thermodynamics and explain the terms used.	
		Define internal energy of a thermodynamic system.	[2+1]
	b)	Derive the relation between pressure and volume for a perfect gas during an adiabatic change.	
		Compare this relation with isothermal change. Hence explain which one is steeper. [2	+1+2]
	c)	Calculate the change in internal energy when 25 gm of oxygen is heated from -5° C to 7° C.	[0]
		Given the specific heat of oxygen at constant volume 0.063 cal/gm/°C.	[2]
3.	a)	Define a Carnot engine. Draw an indicator diagram just showing the processes of a carnot cycle	
		without detailed discussion.	[1+2]
	b)	Distinguish between reversible and irreversible changes. Give examples.	[2]
	c)	State the physical significance of entropy of a thermodynamic system. State second law of	[0 1]
	1)	thermodynamics in terms of entropy.	[2+1]
	a)	The efficiency of a Carnot engine is 40% and the temperature of its heat-sink is /°C. Find out the	[2]
		temperature of the heat-source of the engine.	[2]
4.	a)	State and explain Stefan's law of black body radiation.	
		Sun radiates energy at the rate of 6.3×10^7 Jm ⁻² s ⁻¹ . If Stefan's constant is 5.669×10^{-8} Wm ⁻² K ⁻⁴ ,	
		calculate the temperature of sun's surface.	[2+1]
	b)	State Newton's law of cooling and establish the law mathematically.	[1+2]
	c)	State Wien's displacement law. Explain it with a graph.	
		The wavelength of maximum energy in lunar spectrum is found to be 14.46×10^{-1} cm. Find the	
		migron	[2] 2]
			[2+2]
<u>Group – B</u>			
[Answer <u>any three</u> questions]			

- 5. a) Define a solenoidal vector. Determine the constant *a* so that the following vector is solenoidal. $\vec{V} = (-4x - 6y + 3z)\hat{i} + (-2x + y - 5z)\hat{j} + (5x + 6y + az)\hat{k}$. [1+1]
 - b) Show that $\vec{\nabla}\phi$ is a vector perpendicular to the surface $\phi(x, y, z) = c$ where c is constant. [3]
 - c) What do you mean by curl of a vector field? State Stoke's theorem. [1+1]
 - d) A vector \vec{S} is defined as $\vec{S} = xy\hat{i} + yz\hat{j} + zx\hat{k}$. Find the divergence and curl of \vec{S} . [3]

- 6. a) An electric dipole is placed in a uniform external electric field. Find out the torque experienced by the dipole and also the potential energy of the dipole.
 Will an electric dipole experience a net force when placed in a non uniform field? [2+2+1]
 - b) Explain the term electric intensity (\vec{E}) , polarisation of dielectric (\vec{P}) and established the relationship $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ where \vec{D} is the electric displacement vector. [1+1+3]
- 7. a) A battery of emf E is connected in series with a resistance R and a capacitance C. Solve the emf equation to find the growth of charge in the capacitor. What do you mean by time constant of this CR circuit?
 - b) A battery of emf 100V is connected with an inductance of 50mH and a resistance of 20Ω in series. After what time the current will rise to half of its maximum value. [2]
 - c) Using Nortons' theorem determine the current in the branch AB in the circuit given below. [4]

- 8. a) What do you mean by electromagnetic induction? State the laws of electromagnetic induction. Hence write the mathematical expression for electromagnetic induction. [1+2+1]
 - b) What do you mean by self inductance? Find an expression for self inductance for a long solenoid. [1+2]
 - c) What do you mean by mutual inductance? Find an expression for mutual inductance between two solenoids placed coaxially. [1+2]

[1+1]

- 9. a) What do you mean by impedance and reactance in any AC circuit?
 - b) An alternating voltage $V(t) = V_0 e^{j\omega t}$ is connected in series with a resistor R, an inductor L and a capacitor C. Solve for the current I(t) flowing through this circuit at any time t. Hence find the condition for resonance. [4+1]
 - c) A series LCR circuit has a quality factor $Q = 5 \cdot 1$ and the resonant frequency $f_0 = 100$ KHz. The power dissipation of the circuit is 100 Watt when it draws a current 1A (rms). Determine the values of R, L and C. [3]

_____× _____